Глава 6. случайные погрешности

Вероятностное описание случайных

Погрешностей

Присутствие случайных погрешностей в результатах измерений легко обнаруживается из-за их разброса относительно некоторого значения. Как уже отмечалось ранее, и результат измерения, и его погрешность с известными оговорками могут рассматриваться (см. разд. 4.2) как случайные величины.

Из теории вероятности известно, что наиболее универсальным способом описания случайных величин является отыскание их интегральных или дифференциальных функций распределения. Интегральной функцией распределения F(x) называют функцию, каждое значение которой для каждого х является вероятностью события, заключающегося в том, что случайная величина хi в i-м опыте принимает значение, меньшее х:

Глава 6. случайные погрешности (6.1)

График интегральной функции распределения показан на рис. 6.1. Она имеет следующие свойства:

• неотрицательная, т.е. F(x) ³ О;

• неубывающая, т.е. F(x2) ³ F(x1), если х2 ³ х,;

• диапазон ее изменения простирается от 0 до 1, т.е. F(- ¥) = 0; F(+ ¥) = 0;

• вероятность нахождения случайной величины х в диапазоне от х1 до х2 Р{х,хх2} = F(x2) — F(x1,).

Более наглядным является описание свойств результатов измерений и случайных погрешностей с помощью дифференциальной функции распределения, иначе называемой плотностью распреде ления вероятностей р(х) = dF(x)/dx. Она всегда неотрицательна и подчиняется условию нормирования в виде:

Глава 6. случайные погрешности

Учитывая взаимосвязь F(x) и р(х), легко показать, что вероятность попадания случайной величины в заданный интервал (х1; х2)

Глава 6. случайные погрешности

Следовательно, рассмотренное выше условие нормирования означает, что вероятность попадания величины х в интервал [- ¥; + ¥] равна единице, т.е. представляет собой достоверное событие.

Из последнего уравнения следует, что вероятность попадания случайной величины х в заданный интервал (х1;х2) равна площади, заключенной под кривой р(х) между абсциссами х1 и х2 (см. рис. 6.1). Поэтому по форме кривой плотности вероятности р(х) можно судить о том, какие значения случайной величины х наиболее вероятны, а какие наименее.

Глава 6. случайные погрешности

Рис. 6.1. Интегральная (а) и дифференциальная (б)

функции распределения случайной величины

Результирующая погрешность зачастую складывается из ряда составляющих с различными плотностями распределения р1(х), р2(х),…, рn(х). В связи с этим возникает задача определения суммарного закона распределения погрешности. Для суммы независимых непрерывных случайных х1 и х2, имеющих распределения р1(х) и р2(х), он называется композицией и выражается интегралами свертки [48, 49]:

Глава 6. случайные погрешности

Графическое определение композиции двух случайных независимых величин показано на рис. 6.2. Следует отметить, что масштаб всех графиков по вертикали произвольный, и должно выполняться условие: площадь, ограниченная кривой плотности вероятности, равна единице.

Глава 6. случайные погрешности

Рис. 6.2. Суммирование законов распределений

Случайные записи:

Урок 5. Вычисление случайной погрешности


Похожие статьи:

  • Глава 4. погрешности измерений

    При анализе значений, полученных при измерениях, следует разграничивать два понятия: истинные значения физических величин и их опытные проявления –…

  • Случайных погрешностей

    При проведении многократных измерений случайная погрешность может быть уменьшена во много раз. Однако погрешность усредненного результата будет…

  • Суммирование случайных погрешностей

    Правила суммирования случайных погрешностей основаны на известных из теории вероятностей положениях [48,49]: а) оценка математического ожидания…

Добавьте постоянную ссылку в закладки. Вы можете следить за комментариями через RSS-ленту этой статьи.
Комментарии и трекбеки сейчас закрыты.