Обзор современных проблем теории эволюции

Геологические и биологические науки в последние десятилетия накопили огромную новую информацию об эволюции органического и неорганического миров Земли, а также о физико-географических, геологических и биогеохимических предпосылках возможного существования каких-либо форм жизни в прошлом или настоящем на других планетах солнечной группы. Эволюция во многих случаях может быть представлена теперь мерой и числом. Собрана обширная информация о многочисленных биологических катастрофах (кризисах), прежде всего, в течение последнего миллиарда лет; об их корреляции с абиотическими кризисами, о возможных общих причинах этих явлений.

Одновременно с этим накоплены огромные объемы информации о структурной организации и молекулярно-генетических механизмах функционирования клеток – основы жизни, факторов изменчивости геномов и о закономерностях молекулярной эволюции клеток и организмов. В то же время, несмотря на обширные данные о молекулярно-генетических механизмах, обуславливающих реакции геномов, клеток и организмов на изменения внешней среды, нам мало что известно о связях этих механизмов с процессами эволюции биоты, происходившими на Земле в моменты глобальных геологических перестроек. Несмотря на обилие информации о закономерностях эволюции органического и неорганического миров, полученных науками о Земле и биологией, она до сих пор остается разрозненной и требует системного обобщения.

К числу крупнейших достижений последних десятилетий можно отнести расшифровку палеонтологами и геологами докембрийской летописи развития органического мира Земли, расширившую геохронологический диапазон наших знаний об эволюции жизни от 550 млн. до почти 4 млрд. лет. Классические концепции эволюции органического мира, основанные на опыте изучения его фанерозойской истории, когда в основных чертах уже сложилась таксономическая и экосистемная иерархия биологических систем, начиная с Ч. Дарвина, развивались в рамках градуалистического понимания филогенетического процесса, центральным звеном которого является вид. Изучение докембрийских форм жизни и условий ее существования поставило в повестку дня новые проблемы.

Благодаря достижениям молекулярной биологии (включая молекулярную филогению), с начала 80-х годов ХХ века стало понятно, что пути биологической эволюции жизни в условиях первоначальной бескислородной (восстановительной) атмосферы и постепенного перехода ее в окислительную (увеличение концентрации кислорода в среде обитания) связаны с жизнью трех царств (доменов организмов) безъядерных прокариот: 1) истинных эубактерий; 2) археобактерий, геном которых имеет некоторые черты сходства с геномом эукариот; 3) эукариот, имеющих оформленное ядро и карпатментализированную цитоплазму с различными типами органелл.

Важнейшим звеном на пути становления биоразнообразия живой оболочки Земли являются открытые в последнее десятилетия вендские бесскелетные Metazoa (вендобионты) с загадочными особенностями метаболизма[16], непосредственные предшественники основных типов современных беспозвоночных, основные филогенетические стволы (на уровне типов и семейств) которых возникли около 540 млн лет назад в начале кембрийского периода.

Изучение микробиальных сообществ в современных экстремальных условиях и их экспериментальное моделирование позволили выявить особенности взаимодействия автотрофных и гетеротрофных форм прокариотной жизни как особый тип адаптации в пространственно неразрывной двуединой системе организм-экосистема[17]. Развитие методов микробиальной палеонтологии и обнаружение с помощью этих методов в метеоритах, предположительно привнесенных на Землю с Марса, структур, напоминающих следы бактериальной жизнедеятельности, дало новый импульс проблеме «вечности жизни»[18].

В последние годы в палеонтологии и геологии накопилось много данных о корреляции глобальных геологических и биотических событий в истории биосферы. Особый интерес в последнее время вызвал «феномен» взрывной биодиверсификации органического мира в ордовикском периоде (450 млн. лет назад), когда возникло огромное количество новых экологических специализаций, в результате чего впервые сформировался глобальный замкнутый биогеохимический цикл в морских экосистемах[19]. Эта «экологическая революция» хорошо коррелируется с появлением в это время озонового экрана в атмосфере, который кардинально изменил пространственные параметры зоны жизни на Земле.

Накопившиеся данные о взаимосвязях главных трендов и периодичности глобальных процессов в эволюции внешних и внутренних оболочек Земли и биосферы как целостной системы поставили в повестку дня проблему управляющего звена в коэволюции Земли и ее биосферы. В соответствии с новыми представлениями, согласующимися с теорией развития больших систем, эволюция биосферы определяется высшими иерархическими уровнями глобальной экосистемы, а на более низких уровнях (популяционном, видовом) обеспечивается ее более «тонкая» настройка («парадокс иерархии систем»)[20]. С этих позиций возникает проблема совмещения концепции видообразования Ч. Дарвина и биосферной концепции В.И. Вернадского.

В связи с открытием в 1970-е годы ХХ столетия в современных океанах уникальных экосистем («черных курильщиков»), следы которых установлены теперь и в отложениях древнего возраста (не менее 400 млн. лет), существующих за счет эндогенной энергии гидротерм, возникла еще одна проблема: являются ли солнечная энергия и кислородная атмосфера необходимыми условиями эволюции жизни на планетах и каков эволюционный потенциал экосистем такого типа?

Таким образом, можно сформулировать следующие современные проблемы теории эволюции:

1. Возникла ли жизнь на Земле в ходе естественной эволюции неорганического мира (теория самозарождения жизни из неорганической материи)? Или она привнесена из Космоса (теория панспермия) и, таким образом, значительно старше Земли и не связана напрямую в своем генезисе с условиями первобытной Земли на момент фиксации в геологической летописи первых следов жизни?

В теории молекулярной эволюции накоплена значительная сумма знаний, указывающих на возможность самовозникновения жизни (в форме простейших самовоспроизводящихся систем) из неорганической материи в условиях первобытной Земли[21].

В то же время имеются факты, которые свидетельствуют в пользу теории панспермии: а) древнейшие осадочные породы с возрастом 3,8 млрд. лет сохранили следы массового развития примитивных форм жизни, а изотопный состав углерода С12/С13 практически не отличается от такового в современном живом веществе; б) в метеоритах обнаружены особенности, которые могут интерпретироваться как следы жизнедеятельности примитивных форм жизни, хотя есть и возражения против этой точки зрения[22].

При этом следует оговориться, что вопрос относительно вечности жизни во Вселенной в конечном счете упирается в вопрос о вечности самой Вселенной. Если жизнь на Землю привнесена из Космоса (теория панспермии), это не снимает проблемы возникновения жизни, а лишь переносит момент возникновения жизни в глубины времени и пространства. В частности, в рамках теории «большого взрыва» время возникновения и распространения жизни во Вселенной не может быть больше 10 млрд. лет[23]. Следует, однако, иметь в виду, что эта дата относится только к нашей Вселенной, а не ко всему Космосу.

2. В чем заключались основные тенденции эволюции примитивных одноклеточных форм жизни на Земле в течение первых 3,5 млрд. лет (или более) развития жизни? Было ли основной тенденцией усложнение внутренней организации клетки с целью максимизировать потребление любых ресурсов малодифференцированной окружающей среды первобытной Земли, или уже тогда часть организмов вступила на путь приспособления к преимущественному использованию какого-либо одного ресурса (специализация), что должно было способствовать дифференциации глобальной первобытной биосферы на систему локальных биоценозов? В этой связи возникает также вопрос о соотношении экзогенных (солнце) и эндогенных (гидротермы) источников энергии для развития жизни на ранних и более поздних этапах.

В настоящее время считается установленным, что простейшие безъядерные бактериальные организмы дали начало эукариотам с развитым ядром, компартментализированной цитоплазмой, органеллами и половой формой размножения[24]. Эукариоты на рубеже около 1,2-1,4 млрд. лет назад значительно увеличили свое биоразнообразие, следствием чего стало интенсивное освоение новых экологических ниш и общий расцвет как ядерных, так и безъядерных форм жизни. Этим объясняется, в частности, массовое образование древнейших биогенных нефтей 1,2-1,4 млрд лет назад, — возможно, самый крупномасштабный процесс преобразования существовавшей тогда биомассы Земли (в 10 раз превышающей современную биомассу) в косную материю. Здесь следует отметить, что существующие методики расчетов массы живого вещества для прошлых геологических эпох по количеству фоссилизированного органического вещества не учитывают балансовые соотношения автотрофного и гетеротрофного ярусов биосферы, что также нужно отнести к одной из важных проблем в изучении глобальных закономерностей эволюции биосферы. Возможно, что первое заметное увеличение биомассы и биоразнообразия эукариот произошло около 2 млрд. лет назад. Возникает вопрос о связи этого глобального эволюционного события с появлением свободного кислорода в атмосфере Земли.

3. Какие факторы обеспечили прогрессивное усложнение геномов эукариот и особенности геномов современных прокариот?

Существовали ли на первобытной Земле условия, благоприятствовавшие эволюционному усложнению структурно-функциональной организации эукариотической клетки? Если да, то какова их природа, когда они возникли и продолжают ли они действовать по сей день?

Какие механизмы обеспечивали согласование самосборки экосистем «снизу» (на популяционном и видовом уровнях) и «сверху» (т.е. на уровне взаимодействия глобальной экосистемы с глобальными эндогенными и экзогенными геологическими процессами)?

Возникает также вопрос об эволюционном потенциале разных уровней биологической организации (на молекулярном, генном, клеточном, многоклеточном, организменном, популяционном) и условиях его реализации. В общем виде можно считать очевидным возрастание эволюционного потенциала на каждом новом уровне биологической организации (т.е. возможностей морфо-функциональной дифференциации жизни на организменном и экосистемном уровнях), однако неясными остаются триггерные механизмы и лимитирующие факторы автогенетического (имарджентного) и внешнего (среды жизни) происхождения. В частности, остается загадочной природа давно установленных палеобиологией ароморфозов (кардинальных изменений планов строения организмов) и сальтаций (вспышек биодиверсификаций, сопровождающихся появлением таксонов высокого ранга). Ароморфозы и сальтации хорошо совпадают с эпохами глобальных биотических перестроек и кардинальных геологических изменений среды (баланса свободного кислорода и углекислого газа в атмосфере и гидросфере, состояния озонового экрана, консолидации и распада суперконтинентов, крупномасштабных флуктуаций климата). Возникновение новых ароморфозов (например, появление бесскелетных, затем скелетных морских Metazoa, сосудистых растений, наземных позвоночных и т.д.) радикально изменяло функциональные и пространственные характеристики биосферы, а также эволюционные тренды в конкретных таксономических группах. Это хорошо согласуется с теоретическим положением кибернетики о направляющей роли в эволюционном процессе высших звеньев иерархических систем.

Происходила ли в истории Земли глобальная смена эволюционных стратегий в рамках стабилизирующего отбора (постоянство условий внешней среды), движущего отбора (выраженные однонаправленные изменения критических параметров внешней среды) и дестабилизирующего отбора (катастрофические изменения параметров внешней среды, затрагивающие иерархически высокие уровни организации биосистем от молекулярно-генетического до биосферного)? Имеется представление о том, что на ранних этапах эволюции биосферы эволюционная стратегия определялась поисками оптимальных вариантов адаптации к физико-химическим условиям среды (некогерентная эволюция). А по мере стабилизации абиотической среды эволюция приобретает когерентный характер и ведущим фактором эволюционной стратегии в экологически насыщенных экосистемах становится выработка трофических специализаций под давлением конкуренции за пищевые ресурсы[25].

Насколько частыми были подобного рода изменения и какую роль играли в них глобальные геологические перестройки? Насколько это связано с появлением эукариот в геологической летописи, а также общим расцветом как ядерных, так и безъядерных форм жизни на рубеже 1,2-1,4 млрд. лет назад?

Каково соотношение постепенного и взрывообразного режимов эволюции на видовом и экосистемном уровнях и как они изменялись на разных этапах истории биосферы?

Возможно ли достоверное восстановление картины эволюции жизни на Земле с учетом принципиальной неполноты геологической летописи и сложности реальных эволюционных процессов?

Какие ограничения накладывают особенности структурно-функциональной организации экосистем на эволюцию превалирующих в них форм жизни?

4. Какова природа триггерных механизмов, обеспечивающих радикальное изменение режимов эволюции жизненных форм? Имеет ли она имманентную сущность, обусловленную внутренними особенностями организации и эволюции биосистем, или обусловлена внешними причинами, например, геологическими перестройками? Как соотносятся эти факторы?

По геологическим данным массовое развитие высокоорганизованных форм изни Metazoa (с мышечными тканями, пищевым трактом и т.д.) произошло в венде около 600 млн. лет назад, хотя, возможно, они появились раньше, о чем свидетельствуют палеонтологические находки последних лет[26]. Но это были бесскелетные мягкотелые Metazoa. Они не имели защитного скелета и при отсутствии озонового слоя, по-видимому, имели ограниченную экологическую нишу. На рубеже 540-550 млн. лет произошел таксономический взрыв (массовое, практически одновременное появление) всех основных типов и классов морских беспозвоночных, представленных в основном уже скелетными формами. Однако полное развитие форм жизни, занявших все основные биотопы на Земле, произошло позже, когда существенно увеличилось количество свободного кислорода в атмосфере и гидросфере и начал стабилизироваться озоновый экран.

Все эти события, с одной стороны, коррелируются с крупнейшими геологическими событиями, а с другой, взрывной характер этих событий требует формирования новых подходов к построению сценариев эволюции на основе синтеза классических дарвиновских представлений и теории развития больших систем, которая хорошо согласуется с учением В.И.Вернадского о биосфере как глобальной биогеохимической системе Земли и современными эколого-геохимическими моделями экосистем разного типа. Все крупнейшие биотические кризисы коррелируются с крупнейшими геологическими перестройками, но подготавливаются саморазвитием биологических систем и накоплением экологического дисбаланса[27].

5. В какой мере фотосинтез и кислородный обмен являются обязательными и необходимыми условиями развития жизни на Земле? Переход от преобладающего хемосинтеза к фотосинтезу на основе хлорофилла произошел, вероятно, около 2 млрд. лет назад, что, возможно, и послужило «энергетической» предпосылкой последующего взрывного увеличения биоразнообразия на планете. Но в последней трети ХХ века был открыт и изучен феномен бурного развития жизни около сероводородных курильщиков на дне океана в полной темноте на основе хемосинтеза[28].

Локальное (точечное) распределение «черных курильщиков» и приуроченность их к определенным геодинамическим обстановкам литосферы (срединно-океаническим хребтам – зонам растяжения земной коры) – важнейшие лимитирующие факторы, препятствующие образованию на этой основе пространственного континуума жизни на Земле в виде современной биосферы. Эволюционный потенциал эндогенного сектора биосферы лимитируется не только пространственными, но и временными ограничениями – недолговечным (в масштабе геологического времени) дискретным характером их существования, которое прерывается периодическим затуханием гидротерм, а в глобальном масштабе литосферными перестройками. Палеонтологические данные показывают, что в геологическом прошлом состав продуцентов этих экосистем (бактериальных сообществ) практически не изменялся, а гетеротрофное население формировалось за счет эмигрантов из «нормальных» биотопов (факультативные биоценозы). Экосистема «черных курильщиков», вероятно, может рассматриваться как хорошая эвристическая модель для решения проблем: 1) ранних этапов развития жизни на Земле в условиях бескислородной атмосферы; 2) возможностей жизни на других планетах; 3) эволюционного потенциала экосистем, существующих за счет эндогенных и экзогенных источников энергии.

Перечень проблем происхождения и эволюции жизни, впервые возникших или получивших новое освещение в свете новейших данных биологии, геологии, палеонтологии, океанологии и других разделов естествознания, можно продолжить. Однако и вышеперечисленные проблемы убедительно свидетельствуют, что на современном этапе развития наших знаний на первый план выдвигается проблема междисциплинарного, системного синтеза этих знаний в рамках новой парадигмы, которую академик Н.Н.Моисеев назвал «универсальным эволюционизмом»[29].

6. Закономерный и направленный характер макроэволюции позволяет поставить вопрос о возможности прогнозирования эволюции. Решение этого вопроса связано с анализом соотношений необходимых и случайных явлений в эволюции организмов. Как известно, в философии категориями необходимости и случайности обозначают разные типы связи явлений. Необходимые связи определяются внутренней структурой взаимодействующих явлений, их сущностью, коренными особенностями. Напротив, случайные связи имеют внешний характер по отношению к данному явлению, будучи обусловлены побочными факторами, не связанными с сущностью этого явления. При этом случайное, конечно, не беспричинно, но его причины лежат вне причинно-следственного ряда, определяющего сущность данного явления. Случайность и необходимость относительны: случайное для одного причинно-следственного ряда является необходимым для другого, и при изменении условий случайные связи могут превратиться в необходимые, и наоборот. Статистическая закономерность представляет собой выявление необходимых, т. е. внутренних, существенных связей среди многочисленных внешних случайных взаимодействий.

7. Среди центральных проблем современной теории эволюции следует назвать коэволюцию разных видов в естественных сообществах и эволюцию самих биологических макросистем — биогеоценозов и биосферы в целом. Продолжаются оживленные дискуссии о роли в эволюции нейтральных мутаций и дрейфа генов, о соотношениях адаптивных и неадаптивных эволюционных изменений, о сущности и причинах типогенеза и типостаза в макроэволюции, неравномерности ее темпов, морфофизиологическом прогрессе и т.д. Многое еще предстоит сделать даже в наиболее разработанных областях эволюционистики — таких, как теория отбора, учение о биологическом виде и видообразовании.

8. Насущной задачей эволюционистики является переосмысливание и интеграция новейших данных и выводов, полученных в последние годы в области молекулярной биологии, онтогенетики и макроэволюции. Некоторые биологи говорят о необходимости нового синтеза, подчеркивая устарелость классических представлений синтетической теории эволюции, являющейся, в сущности, в основном теорией микроэволюции, и необходимость преодоления характерного для нее узкоредукционистского подхода.

Лекция №11

Тема. Основные этапы химической и биологической эволюций.

1. Возникновение жизни (биогенез).Современные гипотезы происхождения жизни.

2. Становление клеточной организации, развитие метаболизма и репродукции протобионтов. Проблема возникновения генетического кода.

Проявления жизни на Земле чрезвычайно многообразны. Жизнь на Земле представлена ядерными и доядерными, одно- и многоклеточными существами; многоклеточные в свою очередь представлены грибами, растениями и животными. Любое из этих царств объединяет разнообразные типы, классы, отряды, семейства, роды, виды, популяции и индвидуу-мы.

Во всем, казалось бы, бесконечном многообразии живого можно выделить несколько разных уровней организации живого: молекулярный, клеточный, тканевый, органный, онтогенетический, популяционный, видовой, биогеоценотический, биосферный. Перечисленные уровни выделены по удобству изучения. Если же попытаться выделить основные уровни, отражающие не столько уровни изучения, сколько уровни организации жизни на Земле, то основными критериями такого выделения должны быть признаны

наличие специфических элементарных, дискретных структур и элементарных явлений. При этом подходе оказывается необходимым и достаточным выделять молекулярно-ге-нетический, онтогенетический, попу-ляционно-видовой и биогеоцено-тический уровни (Н.В. Тимофеев-Ресовский и др.).

Молекулярно-генетический уровень. При изучении этого уровня достигнута, видимо, наибольшая ясность в определении основных понятий, а также в выявлении элементарных структур и явлений. Развитие хромосомной теории наследственности, анализ мутационного процесса, изучение строения хромосом, фагов и вирусов вскрыли основные черты организации элементарных генетических структур и связанных с ними явлений. Известно, что основные структуры на этом уровне (коды наследственной информации, передаваемой от поколения к поколению) представляют собой ДНК, дифференцированную по длине на элементы кода — триплеты азотистых оснований, образующих гены.

Гены на этом уровне организации жизни представляют элементарные единицы. Основными элементарными явлениями, связанными с генами, можно считать их локальные структурные изменения (мутации) и передачу хранящейся в них информации внутриклеточным управляющим системам.

Конвариантная редупликация происходит по матричному принципу путем разрыва водородных связей двойной спирали ДНК с участием фермента ДНК-полимеразы (рис. 4.2). Затем каждая из нитей строит себе соответствующую нить, после чего новые нити комплементарно соединяются между собой. Пи-римидиновые и пуриновые основания комплементарных нитей скрепляются водородными связями между собой ДНК-полимеразой. Этот процесс осуществляется очень быстро. Так, на 34 самосборку ДНК кишечной палочки (Escherichia coli), состоящей примерно из 40 тыс. пар нуклеотидов, требуется всего 100 с. Генетическая информация переносится из ядра молекулами иРНК в цитоплазму к рибосомам и там участвует в синтезе белка. Белок, содержащий тысячи аминокислот, в живой клетке синтезируется за 5—6 мин, а у бактерий быстрее.

факторов.

На онтогенетическом уровне единицей жизни служит особь с момента ее возникновения до смерти. По существу, онтогенез — это процесс развертывания, реализации наследственной информации, закодированной в управляющих структурах зародышевой клетки. На онтогенетическом уровне происходит не только реализация наследственной информации, но и апробация ее посредством проверки согласованности в реализации наследственных признаков и работы управляющих систем во времени и пространстве в пределах особи. Через оценку индивидуума в процессе естественного отбора происходит проверка жизнеспособности данного генотипа.

Онтогенез возник после дополнения конвариантной редупликации новыми этапами развития. В ходе эволюции возникает и постепенно усложняется путь от генотипа к фенотипу, от гена до признака. Как будет показано далее, возникновение онтогенетических дифференцировок лежит в основе возникновения всех эволюционных новообразований в развитии всякой группы организмов. В ряде экспериментальных эмбриологических работ установлены существенные частные закономерности онтогенеза (см. гл. 14). Но все еще не создана общая теория онтогенеза. Мы до сих пор не знаем, почему в онтогенезе строго определенные процессы происходят в должное время и в должном месте. Пока можно предполагать, что элементарными структурами на онтогенетическом уровне организации жизни служат клетки, а элементарными явлениями — какие-то процессы, связанные с дифференцировкой. В общей форме ясно также, что онтогенез совершается вследствие работы саморегулирующейся иерархической системы, определяющей согласованную реализацию наследственных свойств и работу управляющих систем в пределах особи. Особи в природе не абсолютно изолированы друг от друга, а объединены более высоким рангом биологической организации на популяционно-видовом уровне.

Популяционно-видовой уровень. Объединение особей в популяции, а популяций в виды по степени генетического и экологического единства приводит к появлению новых свойств и особенностей в живой природе, отличных от свойств моле-кулярно-генетического и онтогенетического уровней.

Литература

Правдин Ф.Н. Дарвинизм. М., 1973. С. 269-278

Константинов А.В. Основы эволюционной теории М.,1979. С.106

Яблоков А.В.,Юсуфов А.Г. Эволюционное учение М., 1998. С.41-50

Случайные записи:

Академические проблемы теории эволюции Дарвина!


Похожие статьи:

Добавьте постоянную ссылку в закладки. Вы можете следить за комментариями через RSS-ленту этой статьи.
Комментарии и трекбеки сейчас закрыты.