Простой категорический силлогизм и его структура

Простой категорический силлогизм есть вид умозаключения (более общо — форма мысли), в котором из двух исходных истинных простых категорических суждений (называемых посылками), связанных между собой определенным образом (по среднему термину), выводится новое по содержанию суждение (называемое выводом, следствием, заключением). В целом, данное умозаключение состоит из трех простых категорических суждений, два из которых — посылки, третье — вывод. Однако, выделяя в качестве элементов умозаключения лишь суждения (посылки и вывод), закономерную связь между ними уловить трудно. Эту связь значительно легче обнаружить, выделяя в категорическом умозаключении и входящие в посылки термины (понятия). Так как субъектно-предикатная запись суждений одинакова для всех видов суждений, то, чтобы отличить субъект или предикат вывода от субъектов и предикатов посылок, следует уточнить нашу символику.

В простом категорическом силлогизме символом S, как и обычно, обозначается субъект вывода и соответствующее ему понятие в посылке. Это — меньший термин. Символом Р обозначается предикат вывода и соответствующее понятие в посылке. Это — больший термин. А то понятие, которое является общим для обеих посылок, т.е. имеется в обоих исходных суждениях, но отсутствует в самом заключении, обозначим символом М. Это — средний термин категорического силлогизма. Используя эту символику, простой категорический силлогизм, например:

Все студенты — учащиеся

Некоторые спортсмены — студенты

Некоторые спортсмены — учащиеся

в формульном виде будет выглядеть так:

М — Р

S — М

S — P

Общим в этом примере для посылок является понятие о студентах, это — средний термин. Он занимает место субъекта в первой посылке и место предиката во второй. Субъектом вывода является понятие о некотором конкретном (этом) человеке, предикатом вывода — понятие об учащихся.

Посылка (исходное суждение), в которой находится субъект вывода (меньший термин), называется меньшей посылкой, а исходное суждение, в котором находится предикат вывода (больший термин), называется большей посылкой. Понятно, что средний термин в посылках выполняет роль связующего звена между субъектом и предикатом вывода, между этими крайними терминами умозаключения. В круговых схемах данное умозаключение выражается следующим образом:

Простой категорический силлогизм и его структура

На этой схеме достаточно наглядно видно, почему субъект вывода — меньший термин, а предикат вывода — больший. Таким образом, по-другому, структуру простого категорического силлогизма составляют три и только три термина: меньший, средний и больший.

Посылками в данном силлогизме могут выступать известные нам четыре вида простых категорических суждений: общеутвердительное, общеотрицательное, частноутвердительное и частноотрицательное. Сочетания этих суждений, могущих быть посылками умозаключения, подчиняются определенным требованиям логики, выступающими законами данной структурированной организации, законами данной формы мысли, т.е. законами простого категорического силлогизма. Эти требования формируют две группы правил для данного умозаключения: правила посылок и правила терминов.

Правила посылок: из двух отрицательных посылок (т.е. из двух исходных простых категорических отрицательных суждений) вывод с необходимостью не следует; из двух частных посылок вывод тоже с необходимостью не следует; если одна из посылок — суждение отрицательное, то и вывод будет необходимо отрицательным; если одна из посылок — суждение частное, то и вывод будет необходимо частным.

Понятно, что если среди посылок одна частная, а другая отрицательная, или если одна из посылок — частноотрицательное суждение, то и вывод будет обязательно частноотрицательным; так же понятно, что из двух положительных посылок отрицательный вывод не следует (первые четыре правила посылок являются определяющими, остальные — производными).

Правила терминов: в простом категорическом силлогизме должно быть три и только три термина: меньший, средний, больший; средний термин должен быть распределен (взят в полном своем объеме, или в полном объеме должен исключаться из рассмотрения), хотя бы в одной из посылок; термин, не распределенный в посылке, не может быть распределен в заключении.

Случайные записи:

Логика 20. Простой категорический силлогизм


Похожие статьи:

Добавьте постоянную ссылку в закладки. Вы можете следить за комментариями через RSS-ленту этой статьи.
Комментарии и трекбеки сейчас закрыты.